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1. Introduction 

The classical theory of ignition in energetic substances is based on the appearance of hot spots. 
Hot spots are the localized areas with temperatures much higher than the average.  These spots 
can be triggered by different physical effects and processes.  One of them is based on the 
mechanism of adiabatic loading.  The classical theory of this mechanism for the liquid/gas media 
is presented in the monographs in references 1–4.  The main element of this mechanism is that 
the easily compressible gaseous bubbles under given pressure become hotter than the less 
compressible condensed liquids surrounding them.  In the first paper of this study (5), we 
demonstrated that the classical theory should be essentially revised by considering the effects of 
the surface tension.  The revision mostly focuses on the influence of the dissolved bubbles of 
small sizes.  

In the second paper of this series (6), we explored spherical holes in solid materials.  These holes 
can serve as the local hot spots.  They are completely different mechanisms than the local 
temperature concentrator.  The gas inside the hole plays no role in this mechanism.  The key idea 
associated with this mechanism is as follows.  When the flammable liquid is subjected to 
external impact, the pressure is totally transferred from the liquid to the dissolved bubble.  The 
situation changes completely when the liquid is substituted with solid.  The solid then plays the 
“shielding” role and, at least partially, precludes direct transfer of the external impact.  Thus, the 
local adiabatic stressing of the solid remains the only source of the local temperature rise.   

One key difference between liquid and solid energetic materials was emphasized in Grinfeld and 
Bjerke (6).  Namely, at equilibrium, the gaseous bubble in the liquid always has the spherical 
shape.  At the same time, it can and does have arbitrary shapes in solid substances.  Thus, the 
analysis of ref 6 is insufficient.  Therefore, in this third part, we explore the role of the form 
factor of the hole.  In order to make a more feasible and transparent study, we limit ourselves 
with the two-dimensional case.  We also dwell on the explicit analysis of the elliptic holes.  

Our analysis reveals one element of key importance—the “shielding effect” disappears for the 
ellipses of small eccentricity.  Thus, intensive heating of gases becomes important again to fill 
these holes.  We establish explicit relevant equations/formulas.  Also, we present the exact 
nonlinear formulation of the problem.  The nonlinear system can be solved numerically.  For 
those numerical solutions, the established exact solutions can be used for verification purposes.
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2. Statement of the Problem 

Exact Nonlinear Statement of the Problem 

In figure 1, an isotropic matrix contains an elliptic inclusion, which usually plays the role of 
stress concentrator. 

  
eS  

2l  

1l  

n  

 

Figure 1.  An elastic plane with a hole. 

Our notation follows the monographs in references 7 and 8.  We shall use the notation ( )x x and 

 X x


 for the radius vectors of a material particle with Lagrangian coordinates ix  in the initial 

configuration and actual configurations, respectively.  The radius vector  X x


 can be presented 

in the following form: 

  X x u x 
  

, (1) 

where  u x


 is the displacement vector.  

Then, we use     / i
ix x x x x  
 

 and   / i
i iX x x u x   
  

 for the covariant bases in the initial 

and reference configurations.  The notations ij i jx x x 
 

 and ij i jX X X 
 

 are used for the 

covariant metric tensors of the initial and reference configurations, respectively.  For the 
contravariant metrics, we use ijx  and ijX , respectively.  We use . |

i
j kT  and . ||

i
j kT  for the covariant 

differentiations of tensors in the initial and reference configurations.  Tensors , ij
ijx x are used for 

lowering and raising indexes. 

We use    ,i
iu x u x  for the components of displacements with respect to the basis in the initial 

configuration, i.e., 
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    i i
i iu u x x u x x 

  
. (2) 

Note the following geometric relationships: 

  . . . .
. .| . . ., ,i i i i i j i

j j i j j i j j j j k kX a x u x x b X a b     
   

, (3) 

and 

  | | .| |

1
2 ,

2
k

ij ij ij ij i j j i i k jX x u u u u u u     , (4) 

where iju  is the tensor of finite differences. 

We use 0  and  for the mass densities in the initial and actual configurations.  In addition to 

their physical meaning, they make connections between the divergences of any contravariant 
tensor iT  in the initial and actual configurations: 

 0
.||

0 |

i i
i

i

T T
 
 

 
  

 
. (5) 

 
We use ijP and jip  for the Cauchy-Green and Piola-Kirchhoff stress tensors, respectively.  These 

two tensors are connected by the following relationship: 

    .0
. | |

0

,ji jq i i ji jq mi
q j q qm q mp P u P p x u X

 
 

    . (6) 

The exact universal bulk equilibrium equation within the matrix is 

 | 0ji
ip  . (7) 

The exact universal equilibrium equation at the interface matrix/gas is 

  .
|

0

jq mi
qm q m jk i gas kp x u X X n p n




   . (8) 

When the matrix deforms elastically, the substance is fully characterized by the internal energy 

density  | ,i je u   per unit volume in the initial configuration;   is the entropy density per unit 

volume in the initial configuration.  

We assume that initial distribution of specific entropy   is uniform— ( ) solx const   —and 

remains unchanged under the loading.  We make the same assumption about the gas or liquid 
within the hole:  ( ) gasx const   .  In this case, exact equilibrium equations 7 and 8 can be 

rewritten in the following form: 



4 
 

 |

| |

( , )
0m n sol

i j i

e u

u

 
   

, (9) 

and 

  | .
|

0 |

( , )m n sol mi
qm q m jk i gas k

q j

e u
x u X X n p n

u





  


. (10) 

We assume that displacements iU  are specified at the external boundary eS  of the 

heterogeneous solid: 

 
e

i i

S
u U . (11) 

To make equations 9–11 mathematically closed, we also need to know the dependence of 
( , )gas gas gas gasp p V  . 

3. Semi-linear System of Adiabatic Loading 

The system just presented is exact; however, it does not allow deeper mathematical analysis.  It 
will be analyzed further by computer-based modeling.  Computer modeling, in turn, requires 
comparison with some exact solutions and a qualitative understanding of the studied 
phenomenon.  Therefore, we proceed with some simplifying assumptions.  Namely, we 
concentrate on the phenomena for which the approximation of linear elasticity provides the 
physically adequate description of the matrix’s behavior.   

In the approximation of linear elasticity, equations 9 and 10 can be replaced with the following: 

 , 0ijkl
k jlC u  , (12) 

and 

  , ,ijkl
k l j gas gasC u n p V   , (13) 

where ijklC is the tensor of adiabatic modules. 

Adiabatic loading is accompanied by the change 0adT     of the absolute temperature 0 , 

which is described by the following approximate relationship: 

 0
,

kl
ad k l

u

T B u
C


 , (14) 
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where uC  is the specific heat capacity at fixed deformations and klB  is the tensor of coefficients 

of thermal expansion. 

The actual volume of the gas-filled hole will be approximated by the following relation: 

 0
i

gas i

S

V V dS u n   . (15) 

The case of isotropic matrix is characterized by the special structure of the tensors ijklC  and 
klB : 

 

 

 
2

, ;
1 2 2

,

  

 
       
 

ijkl ij kl ik jl il jk

ij kl ik lj il kj

ij ij

C x x x x x x

B K x

  

 
 

  



 

 
       

  

  (16) 

where   and   are the Lame adiabatic elastic modules (   and       are the Lame 

isothermal elastic modules), 2 /3K      is the isothermal module of volumetric 

compression, and   is the coefficient of thermal expansion. 

For isotropic substances, we arrive at the following relationships: 

 .0
.
k

ad k
u

T K u
C 
   , (17) 

and 

 ., (., .)2ij ij k i j
ad kp x u u    , (18) 

the second of which can also be presented in the following form: 

 
2 2

.0
. (., .)2 .ij k ij i j

ad k
u

K
p u x u

C


 
  

 
   
 

 (19) 

4. An Elliptic Inclusion in a Stressed Isotropic Plane  

In this section, we focus on one rich class of problems—permitting explicit solutions.  These 
problems deal with an elliptic hole within an infinite isotropic matrix, with specified 
displacement gradients ij  at infinity.   

 | |j m
i iju x at x   . (20) 



6 
 

We will be looking for solutions of the system (equation 20) next. 

Within the matrix: 

 .
. , .. ,

1 1

2 8 (1 )
j j j k

i ij i j ijku x


    
  

  


, (21) 

Within the inclusion: 

 j
i iju x , (22) 

where jk  is a certain symmetric matrix and ( )x  and ( )x  are the harmonic and bi-harmonic 

potentials of an ellipse having the shape of the hole: 

 
2

* * * *1 1
( ) ln , ( ) ln 1 , ( , ) | | .

2

r
x d x d r x x x x

r r 
          

  
 

 (23) 

The potential ( )x  and its first derivatives are continuous across the ellipse boundary.  The same 
is true about the potential ( )x  and its derivatives up to third order.  The following relationships 

for discontinuities of the higher derivatives are valid: 

 , ,2 , 4ij i j ijkl i j k ln n n n n n   
 

 
        . (24) 

Inside the ellipse, the second derivatives of the potential   are constant and given by the 

following formula: 

 
2

1 2
,

11 2

2 1
ij ij Ai Aj

A A

a a
N l l

a a a






   
  , (25) 

where Aa  is the length of the semi-axes of the ellipse and Ail  is their director. 

The analogous formula for the fourth derivatives of the potential ( )x  inside the ellipse is as 

follows: 

 
 

   
 

 
2 1 2 1 2 11 2

, 1 1 1 1 2 2 2 22 2 2

1 2 1 2 1 2

2 2 2 22
,ijkl ijkl i j k l ijkl i j k l

a a a a a aa a
M l l l l L l l l l

a a a a a a

 


 
     

  
 (26) 

where the tensor ijklL  is equal to 

 1 1 2 2 1 2 1 2 1 2 2 1 2 1 1 2 2 1 2 1 2 2 1 1 .ijkl i j k l i j k l i j k l i j k l i j k l i j k lL l l l l l l l l l l l l l l l l l l l l l l l l       (27) 

Direct verification gives us 
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2 1 2 1 2 11 2
. 1 1 2 2 1 1 2 22 2 2

1 2 1 2 1 2

2 2
1 1 2 2

1 2 1 2

2 2 2 22

4 4
2 .

 
   

  

  
 

j
jkl k l k l k l k l

k l k l kl

a a a a a aa a
M l l l l l l l l

a a a a a a

a a
l l l l N

a a a a

 

 
 (28) 

Combining equations 21 and 24–26, we get the following formula of the displacement’s 
gradients on the ellipse’s boundary:  

 

.
, . , .. ,

0

. .
. .. . ..

1 1

2 8 (1 )

1 1 1 1
.

2 8 (1 ) 2 (1 )



 
    

    
 

k k l
i j ij i jk ijklS

S

k k l k k l
ij i jk ijkl i j k i j k l

u

N M n n n n n n

    
  

    
       (29) 

Using equation 29, we arrive at the following formula of the stresses in the matrix:  

 

 

( )
.. . .. . .

.. . .

1 1 1 1

2(1 ) 4(1 )

1
,

1



 
     

   

  


mn mn mn mn n m k l k m n
s kl kl k l k

m n mn k l k n m
k l k

p p x N M N n n

n n n n n n



 





  

    

   
  (30) 

where  

 
2

1 2
mn ij mn im nj in jm

ijp x x x x x x




 



 
     

. (31) 

Contracting equation 30 with mn , we get  

  ..
.. ..

mn mn mn k l
s n kl np n A n   , (32) 

where 

 .. ( )
.. .. .

1 1 1 1

2(1 ) 4(1 )
mn mn mn n m n m
kl kl kl k l k lA x N M N

 


  

    
   

 
. (33) 

 
In view of the boundary condition (equation 13) and the arbitrariness of the normal orientation 
that equation 32 implies,  

 ..
.. ( )mn kl mn mn

klA p p V    . (34) 

Equation 34 should be treated as a linear equation with respect to the unknown tensor kl .  

Taking the skew-symmetric part of equation 34 and using equation 33, we get  
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   0kl  . (35) 

Thus, the tensor kl  is necessarily symmetric.  For the symmetric part of tensor ( )kl ,  

equation 34 obviously implies the following: 

 ( ) .. ( )
..( ) ( )mn kl mn mn

klA p p V    . (36) 

For the actual volume V , we get  

 ..
0 . .. , .. , .

1 1
1

2 8 (1 )
i j i j k i
i ij ijkV V



    
  

 
    

  
 . (37) 

Relationship 37 is implied by the following chain: 

 

0

.
0 0 . , .. ,

0

.
0 . , .. ,

0

..
0 . .. , .. ,.

1 1

2 8 (1 )

1 1

2 8 (1 )

1 1

2 8 (1 )







          

        

        

 





i j j j k i
i ij i j ijkS S

S

j j j k i
ij i j ijkS

S

i j i j k i
i ij ijkV

V V dSu n V dS x n

V dS x n

V dV







    
  

    
  

    
  

..
0 . .. , .. ,.

1 1
1 .

2 8 (1 )

 
    

  

i j i j k i
i ij ijkV



    
  

 (38) 

Using formulas 24, and 28, we can rewrite equation 37 as follows: 

 
 . ..

0

1 2
1

4 1
i j i
i ij

V
N

V





 

 


  


 , (39) 

as it follows from the following chain: 

 

 

..
. .. , .. ,.

0

. .. .. . ..

1 1
1

2 8 (1 )

1 21 1
1 1 .

2 4 (1 ) 4 1

   



      

 

i j i j k i
i ij ijk

i j i j k i j i
i ij jk i ij

V

V

N N N





 

    
  


    

      (40) 

The following explicit formula of ( )..
..( )
mn
klA  is derived in appendix A: 
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( ).. ( )1 2
..( ) 1 2 1( 2 )2

1 2

1 1 1 2 2 2 1 2

1 1 1 1 1 1 2 22 2

1 2 1 2

1 1 1 2 1 2 2 2

2 2 1 12

1 2

41

2(1 )

2(1 ) 1 2 2 1 2

2(1 ) 2(1 )

2 1 2 1 2 2 1

2(1 )


 

    
 

   

    
 

 

mn m n
kl k l

m n m n
k l k l

m n
k l

a a
A l l l l

a a

a a a a a a a a
l l l l l l l l

a a a a

a a a a a a a a
l l l l

a a



  

 

  





   

 

   


 

  2 2 2 22

1 2

.
2(1 ) 

m n
k ll l l l

a a




 (41) 

Let ..
..
kl

pqB  be a tensor symmetric in the upper and lower indexes such that  

 ( ) .. .. ( )
..( ) ..
mn kl m n

kl pq p qA B    . (42) 

Tensor ..
..
kl

pqB  is calculated explicitly in appendix A and is given by equations A-3 and A-4. 

Then, equation 36 implies 

 ( ) ..
.. ( )pq pq mn mn

mnB p p V      . (43) 

Using equation 33, we can rewrite equation 30 as follows: 

    ..
.. .. . . .. . .

1
.

1
mn mn mn n m k l k m n m n mn k l k n m
s kl k l k k l kA n n n n n n n n



         
      


 (44) 

At last, using equation 36, we can transform equation 44 as  

 

   

 

..
.. .. . . .. . .

( )
.. . . ..

1

1

1
( ) 2 .

1

      


    


mn mn mn n m k l k m n m n mn k l k n m
s kl k l k k l k

mn nm k m n m n mn k l
k k l

p p A n n n n n n n n

p V n n n n n n







       


     
  (45) 

Let us consider any vector mt  tangential to the unit normal in .  Then, equation 45 gives us   

 . .( ) .
1

mn mn
s m n m n m np t t p V t t n n








 
      

 (46) 

Using equations A-3 and A-4 from appendix A, we can rewrite equation 49 as follows:  

 

( ) ..
..

11 1 1 1 1 12 1 1 2 2 21 2 2 1 1

( )
22 2 2 2 2 1 2 1( 2 )

( )

( ) ,





    
   

       

kl kl mn mn
mn

k l k l k l
p q p q p q pq pq

k l k l
p q p q

B p p V

B l l l l B l l l l B l l l l
p V

B l l l l bl l l l

 

 
 (47) 

or else as  
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11 1 1 1 1 12 1 1 2 2

( )
21 2 2 1 1 22 2 2 2 2 1 2 1( 2 ) .

 

  

    

    

kl k l pq k l pq
p q p q

k l pq k l pq k l pq
p q p q p q

B l l l l p B l l l l p

B l l l l p B l l l l p bl l l l

  

    (48) 

Equation 39 now takes the following form: 

 

 
    

 
    

 

3 3
0 1 2

.
0 1 2 1 2 0

3 2 2 3
2 1 2 1 2 1

1 1
1 2 1 2

3 2 2 3
1 2 1 2 1 2

2 2
1 2 1 2

1 21

2

2 1 1 2 2

2

2 1 1 2 2
.

2







  
    

    




    




i
i

pq
p q

pq
p q

V V a a V
p p

V a a a a V

a a a a a a
p l l

a a a a

a a a a a a
p l l

a a a a



 

 


 

  



  

  (49) 

Introducing the eccentricity 2 1/a a  , we can rewrite equation 49 as follows: 

 
 

 
    

32
0

. 1 1
0 0

3

2 2 2 2 1 1

11 21 1

2 1

1 2 11
.

1 1 2




 

    
     

  
  

 

pq
i
i p q

pq pq

p q p q p q

V V pV
p p l l

V V

p p
l l l l l l

 

 

   
     

   
      (50) 

5. Some Special Cases 

In the case of a circular inclusion, eccentricity   is equal to 1 and equation 50 reads 

  0
1 1 2 2

0 0

11 ij
i j i j

V V V
p p l l l l

V V


  

 
   

 
, (51) 

or else 

  0
1 2

0 0

11V V V
p

V V
  

   

 
   

 
, (52) 

where 1  and 2   are the principal stresses at infinity. 

 1 1 1 2 2 2,ij ij
i j i jp l l p l l      . (53) 

At 2 1/ 1a a   , we can reduce equation B-3 in appendix B to the following form:
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0 1 2

0 0

1 2 1 2 11

2 2

V V V
p

V V

         
    

 
     

   
 

. (54) 

In the lowest order terms in  , we get 

  1 2
0

1
V

p
V

   

 
    

 
. (55) 

5.1 The “Linear” Gas Model 

For further insight, let us consider the simplest case of a “linear gas” defined by the following 
relationship: 

 0

0
g

V V
p K

V


 . (56) 

When dealing with the circular hole and the model of linear gas, equation 52 gives the following: 

 
 

0

0

2 1
,

g

V V
p

V K


 





 (57) 

and 

 
 2 1g

g

K
p p

K


 





, (58) 

where p  is the pressure at infinity, defined as  1 2 / 2p       . 

Usually, the adiabatic incompressibility of gas gK  is much smaller than the shear modulus   of 

the matrix.  Then, equation 58 teaches us that there is a strong “shielding” factor  :  

    2 1 /g gK K     . (59) 

In other words, the induced pressure p of the gas is much smaller than the pressure p  acting at 

infinity, hence, the smaller induced temperature. 

For the case of the arbitrary elliptic hole filled with the linear gas, equation 50 reads 

  
    1 2

3 3 3

1 2

1 1
2

1 2
1

1 2 1 2

p

p 
   

 

    
       

 
 

 


 

                 

, (60) 

where 



12 
 

 
 21

,
1

gK   

 

   
   


. (61) 

For finite   and 0  , equations 60 and 61 give us the following in the lowest order terms:  

  1 21p          . (62) 

Equation 62 shows that for the crack-like hole, the shielding effect of the matrix disappears 
completely; the pressure with the hole is the same order of magnitude as the stresses applied at 
infinity.  

5.2 The Model of Ideal Gas 

Equation 55 shows that the formula (equation 62) for the gas pressure is valid not only for the 
model of the “linear” gas within crack-like holes but, actually, for any gaseous liquid media.  

We are reminded that the adiabatic processes of the ideal gases are described by the following 
relationships:  

 
1

0 0

0 0

, .
p V V

p V V

 



       
   

 (63) 

 
The constant   is defined as /p vC C  , where pC  and cC  are the specific heat capacities at 

fixed pressure and volume, respectively. 

Thus, for this model, equation 50 can be rewritten as follows: 

 
 

 
  

1
321 1

0 1

0 0

3

2 2 1

11 21
1

1

1 2 11
,

1 1 2

 




  

     
          

   
 

 

p
p


   

 

      
       

      
    

 (64) 

where 0p  is the original pressure of gas in the hole. 

6. Discussion and Conclusion 

We formulated exact nonlinear systems (equations 9–11) to numerically explore the stress-
induced hot spots around holes of different shapes filled with gases or liquids. 
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We then formulated semi-linear systems (equations 12–15) based on the assumption of small 
deformations in the solid matrix.  The “pressure-volume” relationship for the gas or liquid 
remains nonlinear. 

With the help of the semi-linear system, we analytically and explicitly explored the problem of 
thermoelastic stresses and deformation in an unbounded isotropic matrix weakened by the gas- 
or liquid-filled inhomogeneity. 

The analysis showed two opposite effects.  First, in the case of a circular inclusion, there was the 
“shielding” effect.  In other words, due to the large shear resistance of the matrix, the pressure of 
the gas was considerably smaller than the stresses in the matrix.  This effect does not exist when 
dealing with liquid energetic materials.  Therefore, contrary to the case of liquid energetic 
substances, when dealing with solids, the spherical holes had a much less chance of becoming 
hot spots (at least, for relatively small stresses). 

In the crack-like holes, the “shielding” effects from shear resistance disappeared.  The gas 
pressure within the hole was the same order of magnitude as the stresses in the matrix.  
Therefore, the behavior of gases within these holes was completely analogous to the behavior of 
gases within spherical bubbles in liquids.  The gas-filled holes in solid explosive materials had 
better chances of becoming the “hot” spots. 
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Appendix A.  A Closer Look at the Tensor ( ) ..
..( )
mn

klA and Its Symmetric Inverse 
..

..
kl

pqB  

Tensor ( )..
..
mn
klA  can be presented in the following form: 

 ( ) .. ( )
.. ( ) 11 1 1 1 1 12 1 1 2 2 21 2 2 1 1 22 2 2 2 2 1 2 1( 2 )
mn m n m n m n m n m n

kl k l k l k l k l k lA A l l l l A l l l l A l l l l A l l l l al l l l     . (A-1) 

The set  

  ( )
1 1 1 1 1 1 2 2 2 2 1 1 2 2 2 2 1 2 1( 2 ), , , ,m n m n m n m n m n

k l k l k l k l k lG l l l l l l l l l l l l l l l l l l l l  (A-2) 

is called canonical basis.  

Let ..
..
kl

pqB  be the inverse tensor with respect to ( )..
..
mn
klA in the sense of equation 42 from the body of 

this report.  We assume that the tensor ..
..
kl

pqB  is symmetric with respect to the upper and lower 

indexes.  We will be looking for ..
..
kl

pqB  in the same form as follows:  

. . ( )
. . 11 1 1 1 1 12 1 1 2 2 21 2 2 1 1 22 2 2 2 2 1 2 1( 2 )
kl k l k l k l k l k l

pq p q p q p q p q p qB B l l l l B l l l l B l l l l B l l l l bl l l l     . (A-3) 

Direct calculations lead to the following formula of the coefficients 11 12 21 22, , , ,B B B B  and b : 

 
     2 1 2 1

11 12
1 1

2 1 1 2 2 1 21 1
, ,

1 2 1 2

a a a a
B B

a a

    
 

     
   

 
   

 
     1 2 2 1

21 22
2 2

2 1 2 1 2 2 11 1
, ,

1 2 1 2

a a a a
B B

a a

    
 

     
   

 
  

 
 2

1 2

1 2

2(1 ) .
a a

b
a a




   (A-4) 
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Appendix B.  Derivation of Equation 50 

Combining equation 48 from the body of this report and equations A-3 and A-4 from appendix 
A, we get 

       ( ) 1 2
1 1 2 2

1 2 1 2

1 1 1

2

 
     

kl
kl k l k l

a a
N l l l l

a a a a



  

                
 

     

( )
1 2 1( 2 ) 11 1 1 1 1

12 1 1 2 2 21 2 2 1 1 22 2 2 2 2

 

  

     
       

k l pq k l pq
p q p q

k l pq k l pq k l pq
p q p q p q

bl l l l p B l l p l l p

B l l p l l p B l l p l l p B l l p l l p
 

 2 1 2 1
11 21 1 1 12 22

1 2 1 2 1 2 1 2

.pq
p q

a a a a
B B l l p B B

a a a a a a a a


   
              

 (B-1) 

A straightforward calculation then gives us the following: 

 ( )1 21

2 1




kl

klN






 
  

 
     

   
3 2 3 2
2 1 2 1 1 2

1 1
1 2 1 2

2 1 1 2 2 1 2


      
 


pq

p q

a a a a a a
p l l p

a a a a
      

 

 
     

   
3 2 3 2
1 2 1 2 2 1

2 2
1 2 1 2

2 1 1 2 2 1 2
.

      
 


pq

p q

a a a a a a
p l l p

a a a a
      

 (B-2) 

Combining equation 39 from the body of this report with equation B-2, we arrive at the 
following equation: 

            
 . .. .

0

1 2
1 1

4 1


    


i j i i
i ij i

V
N

V





  

 
  

     
 

3 2 3 2
2 1 2 1 1 2

1 1
1 2 1 2 0

2 1 1 2 2 1 2

2 

        
      

pq
p q

a a a a a a V
p l l p

a a a a V
      


 

 
     

 

3 2 3 2
1 2 1 2 2 1

2 2
1 2 1 2 0

2 1 1 2 2 1 2
.

2 

         
      

pq
p q

a a a a a a V
p l l p

a a a a V
      


 (B-3) 
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Equation B-3 can be rewritten as follows: 

       0
.

0


 i

i

V V

V
  

 
     

 

3 2 3 2
2 1 2 1 1 2

1 1
1 2 1 2 0

2 1 1 2 2 1 2

2 

        
      

pq
p q

a a a a a a V
p l l p

a a a a V
      


 

 
     

 

3 2 3 2
1 2 1 2 2 1

2 2
1 2 1 2 0

2 1 1 2 2 1 2
.

2 

        
      

pq
p q

a a a a a a V
p l l p

a a a a V
      


 (B-4) 
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